Ubiquitin C
Ubiquitin C |
PDB rendering based on 1aar. |
Available structures |
PDB |
1C3T, 1CMX, 1D3Z, 1F9J, 1FXT, 1G6J, 1GJZ, 1NBF, 1OGW, 1Q5W, 1S1Q, 1SIF, 1TBE, 1UBI, 1UBQ, 1UD7, 1XD3, 1XQQ, 1YX5, 1YX6, 1ZGU, 1ZO6, 2AYO, 2BGF, 2DEN, 2FUH, 2G45, 2GBJ, 2GBK, 2GBM, 2GBN, 2GBR, 2GMI, 2HTH, 2IBI, 2J7Q, 2JF5, 2JRI, 2JY6, 2JZZ, 2K25, 2K6D, 2K8B, 2K8C, 2KDF, 2KHW, 2KJH, 2KLG, 2KN5, 2NR2, 2O6V, 2OJR, 2PE9, 2PEA, 2W9N, 2WDT, 2Z59, 2ZCB, 2ZVN, 2ZVO, 3A33, 3ALB, 3BY4, 3C0R, 3DVG, 3DVN, 3EEC, 3EFU, 3EHV, 3H7P, 3H7S, 3HM3, 3I3T, 3IFW, 3IHP, 3JSV, 3JVZ, 3JW0, 3KVF, 3KW5, 3LDZ, 3MTN, 3N3K, 3OFI |
|
Identifiers |
Symbols |
UBC; HMG20 |
External IDs |
OMIM: 191340 MGI: 98889 HomoloGene: 39626 GeneCards: UBC Gene |
|
RNA expression pattern |
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
7316 |
22190 |
|
Ensembl |
ENSG00000150991 |
ENSMUSG00000008348 |
|
UniProt |
P0CG48 |
Q3TH47 |
|
RefSeq (mRNA) |
XM_001132949 |
NM_019639.4 |
|
RefSeq (protein) |
XP_001132949 |
NP_062613.3 |
|
Location (UCSC) |
Chr 12:
125.4 – 125.4 Mb |
Chr 5:
125.87 – 125.87 Mb |
|
PubMed search |
[1] |
[2] |
|
Ubiquitin is a protein that in humans is encoded by the UBC gene.[1][2][3]
Interactions
Ubiquitin C has been shown to interact with SCNN1A,[4][5] SCNN1G,[4][5] Parkin (ligase),[6][7] P70-S6 Kinase 1,[8] TRAF6,[9][10][11][12][13] HDAC3,[14] SFPQ,[15] S100A10,[16] Mothers against decapentaplegic homolog 3,[17][18] NOTCH1,[19] HIF1A,[20][21][22] Epidermal growth factor receptor,[23][24][25] E2F1,[26] Basigin,[27] IRAK1,[9][12][28][29] NFE2L2,[30][31] RIPK1,[9][13][32][33][34] Mdm2,[35][36][37] Kappa Opioid receptor,[38] NUAK1,[39] BIRC2,[33][40][41] Thyroid hormone receptor alpha,[14] Sp1 transcription factor,[42] SMURF2,[43][44] MARK4,[39] Cdk1,[14] PCNA[45][46][47] and P53.[23][35][36][37][48][49][50][51]
References
- ^ Board PG, Coggan M, Baker RT, Vuust J, Webb GC (May 1992). "Localization of the human UBC polyubiquitin gene to chromosome band 12q24.3". Genomics 12 (4): 639–42. doi:10.1016/0888-7543(92)90287-3. PMID 1315303.
- ^ Marinovic AC, Zheng B, Mitch WE, Price SR (May 2002). "Ubiquitin (UbC) expression in muscle cells is increased by glucocorticoids through a mechanism involving Sp1 and MEK1". J Biol Chem 277 (19): 16673–81. doi:10.1074/jbc.M200501200. PMID 11872750.
- ^ "Entrez Gene: UBC ubiquitin C". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7316.
- ^ a b Boulkroun, Sheerazed; Ruffieux-Daidié Dorothée, Vitagliano Jean-Jacques, Poirot Olivier, Charles Roch-Philippe, Lagnaz Dagmara, Firsov Dmitri, Kellenberger Stephan, Staub Olivier (Oct. 2008). "Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3". Am. J. Physiol. Renal Physiol. (United States) 295 (4): F889–900. doi:10.1152/ajprenal.00001.2008. ISSN 0363-6127. PMID 18632802.
- ^ a b Raikwar, Nandita S; Thomas Christie P (May. 2008). "Nedd4-2 isoforms ubiquitinate individual epithelial sodium channel subunits and reduce surface expression and function of the epithelial sodium channel". Am. J. Physiol. Renal Physiol. (United States) 294 (5): F1157–65. doi:10.1152/ajprenal.00339.2007. ISSN 0363-6127. PMC 2424110. PMID 18322022. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2424110.
- ^ Yu, Furong; Zhou Jianhua (Jul. 2008). "Parkin is ubiquitinated by Nrdp1 and abrogates Nrdp1-induced oxidative stress". Neurosci. Lett. (Ireland) 440 (1): 4–8. doi:10.1016/j.neulet.2008.05.052. ISSN 0304-3940. PMID 18541373.
- ^ Kawahara, Kohichi; Hashimoto Makoto, Bar-On Pazit, Ho Gilbert J, Crews Leslie, Mizuno Hideya, Rockenstein Edward, Imam Syed Z, Masliah Eliezer (Mar. 2008). "alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease". J. Biol. Chem. (United States) 283 (11): 6979–87. doi:10.1074/jbc.M710418200. ISSN 0021-9258. PMID 18195004.
- ^ Panasyuk, Ganna; Nemazanyy Ivan, Filonenko Valeriy, Gout Ivan (May. 2008). "Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1". Biochem. Biophys. Res. Commun. (United States) 369 (2): 339–43. doi:10.1016/j.bbrc.2008.02.016. PMID 18279656.
- ^ a b c Newton, Kim; Matsumoto Marissa L, Wertz Ingrid E, Kirkpatrick Donald S, Lill Jennie R, Tan Jenille, Dugger Debra, Gordon Nathaniel, Sidhu Sachdev S, Fellouse Frederic A, Komuves Laszlo, French Dorothy M, Ferrando Ronald E, Lam Cynthia, Compaan Deanne, Yu Christine, Bosanac Ivan, Hymowitz Sarah G, Kelley Robert F, Dixit Vishva M (Aug. 2008). "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell (United States) 134 (4): 668–78. doi:10.1016/j.cell.2008.07.039. PMID 18724939.
- ^ Chen, Lu; Dong Wei, Zou Tingting, Ouyang Lu, He Guoqing, Liu Yingle, Qi Yipeng (Aug. 2008). "Protein phosphatase 4 negatively regulates LPS cascade by inhibiting ubiquitination of TRAF6". FEBS Lett. (Netherlands) 582 (19): 2843–9. doi:10.1016/j.febslet.2008.07.014. ISSN 0014-5793. PMID 18634786.
- ^ Lamothe, Betty; Campos Alejandro D, Webster William K, Gopinathan Ambily, Hur Lana, Darnay Bryant G (Sep. 2008). "The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL". J. Biol. Chem. (United States) 283 (36): 24871–80. doi:10.1074/jbc.M802749200. ISSN 0021-9258. PMC 2529010. PMID 18617513. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2529010.
- ^ a b Conze, Dietrich B; Wu Chuan-Jin, Thomas James A, Landstrom Allison, Ashwell Jonathan D (May. 2008). "Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation". Mol. Cell. Biol. (United States) 28 (10): 3538–47. doi:10.1128/MCB.02098-07. PMC 2423148. PMID 18347055. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2423148.
- ^ a b Ma, Qi; Zhou Li, Shi Huili, Huo Keke (Jun. 2008). "NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation". Cell. Signal. (England) 20 (6): 1044–51. doi:10.1016/j.cellsig.2008.01.015. ISSN 0898-6568. PMID 18299187.
- ^ a b c Tan, Fengwei; Lu Lifang, Cai Yun, Wang Jinglan, Xie Yunfei, Wang Lin, Gong Yanhua, Xu Bing-E, Wu Jun, Luo Ying, Qiang Boqin, Yuan Jiangang, Sun Xiaoqing, Peng Xiaozhong (Jul. 2008). "Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells". Proteomics (Germany) 8 (14): 2885–96. doi:10.1002/pmic.200700887. PMID 18655026.
- ^ Stelzl, Ulrich; Worm Uwe, Lalowski Maciej, Haenig Christian, Brembeck Felix H, Goehler Heike, Stroedicke Martin, Zenkner Martina, Schoenherr Anke, Koeppen Susanne, Timm Jan, Mintzlaff Sascha, Abraham Claudia, Bock Nicole, Kietzmann Silvia, Goedde Astrid, Toksöz Engin, Droege Anja, Krobitsch Sylvia, Korn Bernhard, Birchmeier Walter, Lehrach Hans, Wanker Erich E (Sep. 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell (United States) 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. ISSN 0092-8674. PMID 16169070.
- ^ He, Kai-Li; Deora Arunkumar B, Xiong Huabao, Ling Qi, Weksler Babette B, Niesvizky Ruben, Hajjar Katherine A (Jul. 2008). "Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11". J. Biol. Chem. (United States) 283 (28): 19192–200. doi:10.1074/jbc.M800100200. ISSN 0021-9258. PMC 2443646. PMID 18434302. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2443646.
- ^ Stolfi, Carmine; Fina Daniele, Caruso Roberta, Caprioli Flavio, Fantini Massimo Claudio, Rizzo Angelamaria, Sarra Massimiliano, Pallone Francesco, Monteleone Giovanni (Jun. 2008). "Mesalazine negatively regulates CDC25A protein expression and promotes accumulation of colon cancer cells in S phase". Carcinogenesis (England) 29 (6): 1258–66. doi:10.1093/carcin/bgn122. PMID 18495657.
- ^ Guo, Xing; Ramirez Alejandro, Waddell David S, Li Zhizhong, Liu Xuedong, Wang Xiao-Fan (Jan. 2008). "Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling". Genes Dev. (United States) 22 (1): 106–20. doi:10.1101/gad.1590908. ISSN 0890-9369. PMC 2151009. PMID 18172167. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2151009.
- ^ Chastagner, Patricia; Israël Alain, Brou Christel (2008). Wölfl, Stefan. ed. "AIP4/Itch regulates Notch receptor degradation in the absence of ligand". PLoS ONE (United States) 3 (7): e2735. doi:10.1371/journal.pone.0002735. PMC 2444042. PMID 18628966. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2444042.
- ^ André, Helder; Pereira Teresa S (Oct. 2008). "Identification of an alternative mechanism of degradation of the hypoxia-inducible factor-1alpha". J. Biol. Chem. (United States) 283 (43): 29375–84. doi:10.1074/jbc.M805919200. ISSN 0021-9258. PMC 2662024. PMID 18694926. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2662024.
- ^ Park, Young-Kwon; Ahn Dae-Ro, Oh Myoungsuk, Lee Taekyoung, Yang Eun Gyeong, Son Miwon, Park Hyunsung (Jul. 2008). "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Mol. Pharmacol. (United States) 74 (1): 236–45. doi:10.1124/mol.108.045278. PMID 18426857.
- ^ Kim, Bu Yeon; Kim Hyungsoo, Cho Eun Jung, Youn Hong Duk (Feb. 2008). "Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation". Exp. Mol. Med. (Korea (South)) 40 (1): 71–83. doi:10.3858/emm.2008.40.1.71. ISSN 1226-3613. PMC 2679322. PMID 18305400. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2679322.
- ^ a b Sehat, Bita; Andersson Sandra, Girnita Leonard, Larsson Olle (Jul. 2008). "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Res. (United States) 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID 18632619.
- ^ Pennock, Steven; Wang Zhixiang (May. 2008). "A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation". Mol. Cell. Biol. (United States) 28 (9): 3020–37. doi:10.1128/MCB.01809-07. PMC 2293090. PMID 18316398. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2293090.
- ^ Umebayashi, Kyohei; Stenmark Harald, Yoshimori Tamotsu (Aug. 2008). "Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation". Mol. Biol. Cell (United States) 19 (8): 3454–62. doi:10.1091/mbc.E07-10-0988. PMC 2488299. PMID 18508924. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2488299.
- ^ Zhou, Fangfang; Zhang Long, Wang Aijun, Song Bo, Gong Kai, Zhang Lihai, Hu Min, Zhang Xiufang, Zhao Nanming, Gong Yandao (May. 2008). "The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation". J. Biol. Chem. (United States) 283 (21): 14506–15. doi:10.1074/jbc.M706136200. ISSN 0021-9258. PMID 18367454.
- ^ Wang, Wen-Juan; Li Qing-Quan, Xu Jing-Da, Cao Xi-Xi, Li Hai-Xia, Tang Feng, Chen Qi, Yang Jin-Ming, Xu Zu-De, Liu Xiu-Ping (2008). "Interaction between CD147 and P-glycoprotein and their regulation by ubiquitination in breast cancer cells". Chemotherapy (Switzerland) 54 (4): 291–301. doi:10.1159/000151225. PMID 18689982.
- ^ Xiao, Hui; Qian Wen, Staschke Kirk, Qian Youcun, Cui Grace, Deng Li, Ehsani Mariam, Wang Xiliang, Qian Yue-Wei, Chen Zhijian J, Gilmour Raymond, Jiang Zhengfan, Li Xiaoxia (May. 2008). "Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation". J. Biol. Chem. (United States) 283 (21): 14654–64. doi:10.1074/jbc.M706931200. ISSN 0021-9258. PMC 2386918. PMID 18326498. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2386918.
- ^ Windheim, Mark; Stafford Margaret, Peggie Mark, Cohen Philip (Mar. 2008). "Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase". Mol. Cell. Biol. (United States) 28 (5): 1783–91. doi:10.1128/MCB.02380-06. PMC 2258775. PMID 18180283. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2258775.
- ^ Shibata, Tatsuhiro; Ohta Tsutomu, Tong Kit I, Kokubu Akiko, Odogawa Reiko, Tsuta Koji, Asamura Hisao, Yamamoto Masayuki, Hirohashi Setsuo (Sep. 2008). "Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy". Proc. Natl. Acad. Sci. U.S.A. (United States) 105 (36): 13568–73. doi:10.1073/pnas.0806268105. PMC 2533230. PMID 18757741. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2533230.
- ^ Patel, Rachana; Maru Girish (Jun. 2008). "Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs". Free Radic. Biol. Med. (United States) 44 (11): 1897–911. doi:10.1016/j.freeradbiomed.2008.02.006. ISSN 0891-5849. PMID 18358244.
- ^ Varfolomeev, Eugene; Goncharov Tatiana, Fedorova Anna V, Dynek Jasmin N, Zobel Kerry, Deshayes Kurt, Fairbrother Wayne J, Vucic Domagoj (Sep. 2008). "c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation". J. Biol. Chem. (United States) 283 (36): 24295–9. doi:10.1074/jbc.C800128200. ISSN 0021-9258. PMID 18621737.
- ^ a b Bertrand, Mathieu J M; Milutinovic Snezana, Dickson Kathleen M, Ho Wai Chi, Boudreault Alain, Durkin Jon, Gillard John W, Jaquith James B, Morris Stephen J, Barker Philip A (Jun. 2008). "cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination". Mol. Cell (United States) 30 (6): 689–700. doi:10.1016/j.molcel.2008.05.014. PMID 18570872.
- ^ Liao, Wentao; Xiao Qi, Tchikov Vladimir, Fujita Ken-ichi, Yang Wensheng, Wincovitch Stephen, Garfield Susan, Conze Dietrich, El-Deiry Wafik S, Schütze Stefan, Srinivasula Srinivasa M (May. 2008). "CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation". Curr. Biol. (England) 18 (9): 641–9. doi:10.1016/j.cub.2008.04.017. ISSN 0960-9822. PMC 2587165. PMID 18450452. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2587165.
- ^ a b Ivanchuk, Stacey M; Mondal Soma, Rutka James T (Jun. 2008). "p14ARF interacts with DAXX: effects on HDM2 and p53". Cell Cycle (United States) 7 (12): 1836–50. doi:10.4161/cc.7.12.6025. PMID 18583933.
- ^ a b Song, Min Sup; Song Su Jung, Kim So Yeon, Oh Hyun Jung, Lim Dae-Sik (Jul. 2008). "The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex". EMBO J. (England) 27 (13): 1863–74. doi:10.1038/emboj.2008.115. PMC 2486425. PMID 18566590. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2486425.
- ^ a b Yang, Wensheng; Dicker David T, Chen Jiandong, El-Deiry Wafik S (Mar. 2008). "CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2". Cell Cycle (United States) 7 (5): 670–82. doi:10.4161/cc.7.5.5701. PMID 18382127.
- ^ Li, Jian-Guo; Haines Dale S, Liu-Chen Lee-Yuan (Apr. 2008). "Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation". Mol. Pharmacol. (United States) 73 (4): 1319–30. doi:10.1124/mol.107.042846. PMID 18212250.
- ^ a b Al-Hakim, Abdallah K; Zagorska Anna, Chapman Louise, Deak Maria, Peggie Mark, Alessi Dario R (Apr. 2008). "Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains". Biochem. J. (England) 411 (2): 249–60. doi:10.1042/BJ20080067. PMID 18254724.
- ^ Didelot, C; Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, Ducoroy P, Cathelin S, Decologne N, Chiosis G, Dubrez-Daloz L, Solary E, Garrido C (May. 2008). "Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation". Cell Death Differ. (England) 15 (5): 859–66. doi:10.1038/cdd.2008.5. ISSN 1350-9047. PMID 18239673.
- ^ Sekine, Keiko; Takubo Kohei, Kikuchi Ryo, Nishimoto Michie, Kitagawa Masayuki, Abe Fuminori, Nishikawa Kiyohiro, Tsuruo Takashi, Naito Mikihiko (Apr. 2008). "Small molecules destabilize cIAP1 by activating auto-ubiquitylation". J. Biol. Chem. (United States) 283 (14): 8961–8. doi:10.1074/jbc.M709525200. ISSN 0021-9258. PMID 18230607.
- ^ Wang, Yi-Ting; Chuang Jian-Ying, Shen Meng-Ru, Yang Wen-Bin, Chang Wen-Chang, Hung Jan-Jong (Jul. 2008). "Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process". J. Mol. Biol. (England) 380 (5): 869–85. doi:10.1016/j.jmb.2008.05.043. PMID 18572193.
- ^ Carpentier, Isabelle; Coornaert Beatrice, Beyaert Rudi (Oct. 2008). "Smurf2 is a TRAF2 binding protein that triggers TNF-R2 ubiquitination and TNF-R2-induced JNK activation". Biochem. Biophys. Res. Commun. (United States) 374 (4): 752–7. doi:10.1016/j.bbrc.2008.07.103. PMID 18671942.
- ^ Lee, Yeon Sook; Han Jung Min, Son Sung Hwa, Choi Jin Woo, Jeon Eun Ju, Bae Suk-Chul, Park Young In, Kim Sunghoon (Jul. 2008). "AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2". Biochem. Biophys. Res. Commun. (United States) 371 (3): 395–400. doi:10.1016/j.bbrc.2008.04.099. PMID 18448069.
- ^ Motegi, Akira; Liaw Hung-Jiun, Lee Kyoo-Young, Roest Henk P, Maas Alex, Wu Xiaoli, Moinova Helen, Markowitz Sanford D, Ding Hao, Hoeijmakers Jan H J, Myung Kyungjae (Aug. 2008). "Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks". Proc. Natl. Acad. Sci. U.S.A. (United States) 105 (34): 12411–6. doi:10.1073/pnas.0805685105. PMC 2518831. PMID 18719106. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2518831.
- ^ Unk, Ildiko; Hajdú Ildikó, Fátyol Károly, Hurwitz Jerard, Yoon Jung-Hoon, Prakash Louise, Prakash Satya, Haracska Lajos (Mar. 2008). "Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination". Proc. Natl. Acad. Sci. U.S.A. (United States) 105 (10): 3768–73. doi:10.1073/pnas.0800563105. PMC 2268824. PMID 18316726. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2268824.
- ^ Brun, Jan; Chiu Roland, Lockhart Katherine, Xiao Wei, Wouters Bradly G, Gray Douglas A (2008). "hMMS2 serves a redundant role in human PCNA polyubiquitination". BMC Mol. Biol. (England) 9: 24. doi:10.1186/1471-2199-9-24. PMC 2263069. PMID 18284681. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2263069.
- ^ Han, Jung Min; Park Bum-Joon, Park Sang Gyu, Oh Young Sun, Choi So Jung, Lee Sang Won, Hwang Soon-Kyung, Chang Seung-Hee, Cho Myung-Haing, Kim Sunghoon (Aug. 2008). "AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53". Proc. Natl. Acad. Sci. U.S.A. (United States) 105 (32): 11206–11. doi:10.1073/pnas.0800297105. PMC 2516205. PMID 18695251. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2516205.
- ^ Abe, Yoshinori; Oda-Sato Eri, Tobiume Kei, Kawauchi Keiko, Taya Yoichi, Okamoto Koji, Oren Moshe, Tanaka Nobuyuki (Mar. 2008). "Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2". Proc. Natl. Acad. Sci. U.S.A. (United States) 105 (12): 4838–43. doi:10.1073/pnas.0712216105. PMC 2290789. PMID 18359851. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2290789.
- ^ Zhang, Zhuo; Zhang Ruiwen (Mar. 2008). "Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation". EMBO J. (England) 27 (6): 852–64. doi:10.1038/emboj.2008.25. PMC 2265109. PMID 18309296. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2265109.
- ^ Dohmesen, Christoph; Koeppel Max, Dobbelstein Matthias (Jan. 2008). "Specific inhibition of Mdm2-mediated neddylation by Tip60". Cell Cycle (United States) 7 (2): 222–31. doi:10.4161/cc.7.2.5185. PMID 18264029.
Further reading
- Mazzé FM, Degrève L (2006). "The role of viral and cellular proteins in the budding of human immunodeficiency virus.". Acta Virol. 50 (2): 75–85. PMID 16808324.
- Kanayama H, Tanaka K, Aki M, et al. (1992). "Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells.". Cancer Res. 51 (24): 6677–85. PMID 1660345.
- Baker RT, Board PG (1989). "Unequal crossover generates variation in ubiquitin coding unit number at the human UbC polyubiquitin locus.". Am. J. Hum. Genet. 44 (4): 534–42. PMC 1715567. PMID 2564731. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1715567.
- Einspanier R, Sharma HS, Scheit KH (1987). "Cloning and sequence analysis of a cDNA encoding poly-ubiquitin in human ovarian granulosa cells.". Biochem. Biophys. Res. Commun. 147 (2): 581–7. doi:10.1016/0006-291X(87)90970-3. PMID 2820408.
- Wiborg O, Pedersen MS, Wind A, et al. (1985). "The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences.". EMBO J. 4 (3): 755–9. PMC 554252. PMID 2988935. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=554252.
- Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction.". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Nenoi M, Mita K, Ichimura S, et al. (1996). "Heterogeneous structure of the polyubiquitin gene UbC of HeLa S3 cells.". Gene 175 (1-2): 179–85. doi:10.1016/0378-1119(96)00145-X. PMID 8917096.
- Yu W, Andersson B, Worley KC, et al. (1997). "Large-scale concatenation cDNA sequencing.". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139146.
- Nenoi M, Mita K, Ichimura S, Kawano A (1998). "Higher frequency of concerted evolutionary events in rodents than in man at the polyubiquitin gene VNTR locus.". Genetics 148 (2): 867–76. PMC 1459823. PMID 9504932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1459823.
- Ott DE, Coren LV, Copeland TD, et al. (1998). "Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus.". J. Virol. 72 (4): 2962–8. PMC 109742. PMID 9525617. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=109742.
- Kim NS, Yamaguchi T, Sekine S, et al. (1998). "Cloning of human polyubiquitin cDNAs and a ubiquitin-binding assay involving its in vitro translation product.". J. Biochem. 124 (1): 35–9. PMID 9644242.
- Schubert U, Ott DE, Chertova EN, et al. (2001). "Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2.". Proc. Natl. Acad. Sci. U.S.A. 97 (24): 13057–62. doi:10.1073/pnas.97.24.13057. PMC 27177. PMID 11087859. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=27177.
- Strack B, Calistri A, Accola MA, et al. (2001). "A role for ubiquitin ligase recruitment in retrovirus release.". Proc. Natl. Acad. Sci. U.S.A. 97 (24): 13063–8. doi:10.1073/pnas.97.24.13063. PMC 27178. PMID 11087860. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=27178.
- Ott DE, Coren LV, Chertova EN, et al. (2001). "Ubiquitination of HIV-1 and MuLV Gag.". Virology 278 (1): 111–21. doi:10.1006/viro.2000.0648. PMID 11112487.
- Strack B, Calistri A, Göttlinger HG (2002). "Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis.". J. Virol. 76 (11): 5472–9. doi:10.1128/JVI.76.11.5472-5479.2002. PMC 137019. PMID 11991975. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=137019.
- Huang L, Feng L, Yang L, et al. (2003). "Screen and identification of proteins interacting with ADAM19 cytoplasmic tail.". Mol. Biol. Rep. 29 (3): 317–23. doi:10.1023/A:1020409217215. PMID 12463424.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139241.
- Ott DE, Coren LV, Sowder RC, et al. (2003). "Retroviruses have differing requirements for proteasome function in the budding process.". J. Virol. 77 (6): 3384–93. doi:10.1128/JVI.77.6.3384-3393.2003. PMC 149504. PMID 12610113. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=149504.
- Evans PC, Smith TS, Lai MJ, et al. (2003). "A novel type of deubiquitinating enzyme.". J. Biol. Chem. 278 (25): 23180–6. doi:10.1074/jbc.M301863200. PMID 12682062.
PDB gallery
|
|
|
1aar: STRUCTURE OF A DIUBIQUITIN CONJUGATE AND A MODEL FOR INTERACTION WITH UBIQUITIN CONJUGATING ENZYME (E2)
|
|
1cmx: STRUCTURAL BASIS FOR THE SPECIFICITY OF UBIQUITIN C-TERMINAL HYDROLASES
|
|
1d3z: UBIQUITIN NMR STRUCTURE
|
|
1f9j: STRUCTURE OF A NEW CRYSTAL FORM OF TETRAUBIQUITIN
|
|
1fxt: STRUCTURE OF A CONJUGATING ENZYME-UBIQUITIN THIOLESTER COMPLEX
|
|
1g6j: STRUCTURE OF RECOMBINANT HUMAN UBIQUITIN IN AOT REVERSE MICELLES
|
|
1gjz: SOLUTION STRUCTURE OF A DIMERIC N-TERMINAL FRAGMENT OF HUMAN UBIQUITIN
|
|
1nbf: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde
|
|
1ogw: SYNTHETIC UBIQUITIN WITH FLUORO-LEU AT 50 AND 67
|
|
1otr: Solution Structure of a CUE-Ubiquitin Complex
|
|
1p3q: Mechanism of Ubiquitin Recognition by the CUE Domain of VPS9
|
|
1q0w: Solution structure of Vps27 amino-terminal UIM-ubiquitin complex
|
|
1q5w: Ubiquitin Recognition by Npl4 Zinc-Fingers
|
|
1s1q: TSG101(UEV) domain in complex with Ubiquitin
|
|
1sif: Crystal structure of a multiple hydrophobic core mutant of ubiquitin
|
|
1tbe: STRUCTURE OF TETRAUBIQUITIN SHOWS HOW MULTIUBIQUITIN CHAINS CAN BE FORMED
|
|
1ubi: SYNTHETIC STRUCTURAL AND BIOLOGICAL STUDIES OF THE UBIQUITIN SYSTEM. PART 1
|
|
1ubq: STRUCTURE OF UBIQUITIN REFINED AT 1.8 ANGSTROMS RESOLUTION
|
|
1ud7: SOLUTION STRUCTURE OF THE DESIGNED HYDROPHOBIC CORE MUTANT OF UBIQUITIN, 1D7
|
|
1uzx: A COMPLEX OF THE VPS23 UEV WITH UBIQUITIN
|
|
1v80: Solution structures of ubiquitin at 30 bar and 3 kbar
|
|
1v81: Solution structures of ubiquitin at 30 bar and 3 kbar
|
|
1wr1: The complex sturcture of Dsk2p UBA with ubiquitin
|
|
1wr6: Crystal structure of GGA3 GAT domain in complex with ubiquitin
|
|
1wrd: Crystal structure of Tom1 GAT domain in complex with ubiquitin
|
|
1xd3: Crystal structure of UCHL3-UbVME complex
|
|
1xqq: Simultaneous determination of protein structure and dynamics
|
|
1yd8: COMPLEX OF HUMAN GGA3 GAT DOMAIN AND UBIQUITIN
|
|
1yiw: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin
|
|
1yj1: X-ray Crystal Structure of a Chemically Synthesized [D-Gln35]Ubiquitin
|
|
1yx5: Solution Structure of S5a UIM-1/Ubiquitin Complex
|
|
1yx6: Solution Structure of S5a UIM-2/Ubiquitin Complex
|
|
1zgu: Solution structure of the human Mms2-Ubiquitin complex
|
|
2ayo: Structure of USP14 bound to ubquitin aldehyde
|
|
2bgf: NMR STRUCTURE OF LYS48-LINKED DI-UBIQUITIN USING CHEMICAL SHIFT PERTURBATION DATA TOGETHER WITH RDCS AND 15N-RELAXATION DATA
|
|
2c7m: HUMAN RABEX-5 RESIDUES 1-74 IN COMPLEX WITH UBIQUITIN
|
|
2c7n: HUMAN RABEX-5 RESIDUES 1-74 IN COMPLEX WITH UBIQUITIN
|
|
2d3g: Double sided ubiquitin binding of Hrs-UIM
|
|
2den: Solution Structure of the Ubiquitin-Associated Domain of Human BMSC-UbP and its Complex with Ubiquitin
|
|
2dx5: The complex structure between the mouse EAP45-GLUE domain and ubiquitin
|
|
2fcm: X-ray Crystal Structure of a Chemically Synthesized [D-Gln35]Ubiquitin with a Cubic Space Group
|
|
2fcn: X-ray Crystal Structure of a Chemically Synthesized [D-Val35]Ubiquitin with a Cubic Space Group
|
|
2fcq: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group
|
|
2fcs: X-ray Crystal Structure of a Chemically Synthesized [L-Gln35]Ubiquitin with a Cubic Space Group
|
|
2fid: Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin
|
|
2fif: Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin
|
|
2fuh: Solution Structure of the UbcH5c/Ub Non-covalent Complex
|
|
2g3q: Solution Structure of Ede1 UBA-ubiquitin complex
|
|
2g45: Co-crystal structure of znf ubp domain from the deubiquitinating enzyme isopeptidase T (isot) in complex with ubiquitin
|
|
2gbj: Crystal Structure of the 9-10 8 Glycine Insertion Mutant of Ubiquitin.
|
|
2gbk: Crystal Structure of the 9-10 MoaD Insertion Mutant of Ubiquitin
|
|
2gbm: Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin
|
|
2gbn: Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin
|
|
2gbr: Crystal Structure of the 35-36 MoaD Insertion Mutant of Ubiquitin
|
|
2gmi: Mms2/Ubc13~Ubiquitin
|
|
2hd5: USP2 in complex with ubiquitin
|
|
2hth: Structural basis for ubiquitin recognition by the human EAP45/ESCRT-II GLUE domain
|
|
2ibi: Covalent Ubiquitin-USP2 Complex
|
|
2j7q: CRYSTAL STRUCTURE OF THE UBIQUITIN-SPECIFIC PROTEASE ENCODED BY MURINE CYTOMEGALOVIRUS TEGUMENT PROTEIN M48 IN COMPLEX WITH A UBQUITIN-BASED SUICIDE SUBSTRATE
|
|
2nr2: The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native states ensembles of proteins
|
|
2o6v: Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH
|
|
2oob: crystal structure of the UBA domain from Cbl-b ubiquitin ligase in complex with ubiquitin
|
|
|
|